
Automating the Administration of Heterogeneous

LANs

Michael Fisk — New Mexico Institute of Mining and Technology

Abstract

The areas of machine configuration and software package installation and maintenance have
been frequent areas of work in recent years. This paper describes a hybrid system developed to
address both problems and more. The resulting system is designed to reduce the complexity of
the administration of a large network of computers down to that of the administration of a few
heterogeneous systems.

In particular, this system allows machines to be maintained without ever having to manually
change files on their disks. Systems can also be upgraded, installed from scratch, or recovered
with a minimum of effort. The system described is designed to be extremely general and
applicable to virtually all versions of UNIX and UNIX-like operating systems.

1 Design Goals

The development of this system was driven by
two primary goals. First, consistency should
be maintained between machines whenever
possible. Machines should have the same con-
figurations and same software unless specif-
ically designed otherwise. At a configura-
tion level, this means assuring that similar
machines use the same nameservers, run the
same daemons, and generally operate identi-
cally. At the software level, it means that the
same version of a package should be installed
the same way on all architectures and all ma-
chines whenever possible.

Second, the process of installing and up-
grading machines should be automated as
much as possible. New hardware, operating
systems, and configuration changes should be
easily assimilated into the configuration of the
local network. Upgrading to a new operat-
ing system should not require scheduling a
large block of down time and a correspond-
ingly large amount of human labor. Similarly,
it should be easy to install any single new ma-

chine so that it matches all similar machines
on the network.
More specifically, the resulting system

should simplify the following tasks:

• Installing and configuring new machines
without forgetting any of the myriad of
small details that make a machine oper-
ate as expected with a network.

• Making small configuration changes to
all current machines.

• Performing major OS upgrades to all
current machines.

• Upgrading services such as mail or
NNTP.

• Migrating services between servers. As
we upgrade our servers and separate ser-
vices onto discreet ‘toasters,’ moving a
service, such as mail or NNTP, to a new
machine was a painstaking process in-
volving too much trial and error. Mak-
ing sure everything was configured cor-
rectly on the new server and remov-

1



ing all superfluous things from the old
server was too labor intensive.

• Maintaining a server-based /usr/local
filesystem for multiple architectures. As
with most sites, our clients mount a
/usr/local filesystem from a server.
Due to the extremely diverse needs of
our user community, our /usr/local is
quite large and exists for four incompat-
ible flavors of UNIX on different hard-
ware platforms. Installing a package for
all architectures so that it behaved iden-
tically on each was too time consuming.

• Migrating packages from a server-based
/usr/local filesystem to local disk on
machines with larger disks.

• Maintaining specialized packages on in-
dividual machines. There was a growing
need to be able to install and maintain
machines in peoples’ offices with special
software that is not available over the
network to all users.

In addition, we sensed the opportunity to
use the same infrastructure to provide the fol-
lowing functions that had also been identified
as tasks that were overly troublesome or re-
dundant.

• Maintain legal DNS files. These files
seemed to be constantly incorrect and
often contained illegal syntax from some
of our less experience system and net-
work administrators.

• Maintain correct /etc/ethers file.
This file is routinely neglected, but used
for some network management function-
ality.

2 Previous Work

OMNICONF [5] isolates configuration files
from operating system files, and provides

mechanisms for storing and then restoring the
configuration files. It does not, however, aid
in installing the operating system itself. It
is also not designed for changes to be made
to a central template and automatically ap-
pear on each workstation. Instead, changes
are supposed to be made on a sample worksta-
tion and the differences stored for application
to other machines. OMNICONF also seems
to lack an easy way of sharing some, but not
all, of a configuration between similar, but not
identical machines.

GeNUAdmin [4] provides extensive mech-
anisms for maintaining configuration files on
machines, but is not designed to maintain
whole installations of large software pack-
ages. Config [7] is better suited to maintain-
ing both configuration files and whole soft-
ware packages, but depends on a potentially
complex rdist file and a primitive database
for describing machines so that they may be
grouped for rdist. In addition, the use of
rdist implies a push rather than a pull mech-
anism. This can cause problems when changes
are pushed while machines are down.

Sasify [9] uses a set of action scripts to per-
form arbitrary operations on machines. The
appropriate action scripts are run using host-
classes representing logical groupings of ma-
chines. Sasify also uses a more attractive pull
paradigm at reboot to insure that changes
get propagated. Unfortunately, Sasify lacks
the infrastructure needed for managing large
sets of software packages for multiple archi-
tectures.

lcfg [1] is designed to solve many of the
same problems that this system addresses,
and therefore provides much of the same func-
tionality. It is unclear, however, how well lcfg
handles the requirement for different software
to be installed on different machines. lcfg

makes extensive use of dynamic configuration
at boot-time. It is therefore intentionally less
sophisticated in maintaining static configura-
tion information.

2



What is desired is a system that uses
Depot-style [8] mechanisms for storing and ar-
ranging software, but that also provides ways
of maintaining machine-specific configuration
files and software subsets. As discussed be-
low, the system should also require clients to
periodically pull new changes from a server
rather than depending on a server being able
to push them.

3 New Concepts

3.1 Static vs. Dynamic

As discussed by Anderson [1], there is a trade-
off between statically configuring machines by
putting their configurations on local disk and
dynamically configuring machines by having
them query a server at boot time.

Out site has experimented with both types
of operations. Our experience has led us to
believe that for reliability and performance,
all configuration information should be stored
locally on the machine. This allows machines
to boot without the presence of the server.
While our main server is generally up, we have
been working hard to make our clients as in-
dependent as possible. Not only does this re-
duce load on the server, but in cases where
large numbers of machines reboot after power
outages or similar disasters, it allows machines
to boot correctly even if the server is not up
yet.

Changes to configuration information
should be made on a central server and then
propagated to the client. This is most ro-
bustly done by pushing information to all
reachable clients and by having all clients
check the servers periodically or at boot-
time. This guarantees that machines that are
down or unreachable won’t miss changes, but
also allows for the immediate propagation of
changes without intensive, frequent queries of
the server.

3.2 Representation of Configura-

tions

Many previous systems for machine configu-
rations are based on performing a series of se-
quential operations on a machine [9, 2]. All
operations must be saved and applied to ma-
chines to insure proper configuration. This
leads to the problem of determining whether
certain actions have been superseded by oth-
ers. It was the conclusion of the author that
the configuration of any typical UNIX work-
station can be represented solely on the con-
tents of its filesystems. Therefore, the config-
uration process need not contain a series of
sequential operations that need to be run on
the machine. Instead, a machine’s configu-
ration can be completely represented as the
union of the correct set of files.

Therefore, the system is built around a set
of separate packages. Each package is the files
necessary for some logically discreet function-
ality. For instance, X11R6, Emacs, and INN
are all typical packages. In order to preserve
generality in the system, the vanilla operat-
ing system, as installed from original media,
is stored as a package. When a machine is
installed from scratch, the operating system
package is installed first. Site-specific config-
uration packages are then loaded on top of
that.

Previous work [7, 2] has been done based
on enumerating files and directories that
should be copied or installed on machines or
groups of machines. Packages offer a more
implicit way of doing this since these files are
often stored together for convenience anyway.
Using packages, directory layout and organi-
zation can be represented in their most natu-
ral states, directories.

A central database is maintained to de-
fine which packages should be installed on any
given machine. Hostclass [3] definitions are
awkward for adding new configurations. It is
harder to locate all classes that a given ma-

3



chine belongs to and to duplicate those for a
new machine. In addition, classes are then
usually associated with actions or groups of
files in a separate database. Because of this,
it is difficult to evaluate the effect of adding a
machine to a given class.
For these reasons, the database is designed

to make use of inheritance hierarchies. A ma-
chine is defined as an object. It can contain
arbitrary variable/value pairs as well as a list
of other objects to inherit variable/value pairs
from. Objects can be defined for any logical
group of machines that share some configura-
tion information. This structure allows a ma-
chine to have a large amount of information
associated with it, while still allowing short,
but flexible, definitions for machines. It also
makes cloning the configuration of a new ma-
chine off of an existing one easy. Additionally,
exceptions to standard configurations are al-
lowed for.

4 Creating Packages

The operating system package is generally
made by installing a machine from scratch
from the vendor’s CD. Once the operating sys-
tem is installed and configured to the point
where it can talk to the network, the filesys-
tem is dumped into a package directory on the
installation server.
Our site runs Linux on over 100 PC’s. A

few of these still have very small hard disks.
For this reason, we have two different ver-
sions of the Slackware package. One version
includes virtually all packages in Slackware.
The other is a stripped-down version that is
sufficient to boot a machine, but will fit on a
small disk.
Our site also has a couple of DEC Alpha

servers. Since DEC releases an operating sys-
tem update as often as we install a machine,
we have not placed the OS in a package. In-
stead, we install the machine from CD as is
usually done and then just execute a partial

installation to configure the machine. Since
we will typically not install this same oper-
ating system version again, we do not bother
copying the OS into a package on the instal-
lation server as we normally would.

5 Structure

The system is composed of three main com-
ponents:

5.1 Machine Database

The machine database, or Machdb as it is
called, defines all machine-specific variables.
These range from IP address to nameserver
to a list of packages to install. The database
is currently implemented as a text file defining
any number of objects. Each object can con-
tain any number of variable/value pairs and
can inherit from any number of other objects,
recursively. This technique allows a definition
for a machine to consist of only a few unique
values such as IP and MAC address. All other
values can be inherited from other objects.

The database allows set operations on
variables in order to support combinations
of different software sets as well as excep-
tions to standard configuration. For exam-
ple, assume that all client machines are de-
fined to inherit from an object by the name of
standard-client that defines PACKAGES=amd
ypclient X11R6 bash emacs. Now assume
that TEX is not a commonly used package
at the site, but that it is required on some
machines. The object for a client may in-
herit from standard-client to get the de-
fault list and also define PACKAGES+=tex.
The += operator will append rather than de-
structively setting the value for that vari-
able. In addition, that client can also define
PACKAGES-=ypclient to prevent it from get-
ting the YP configuration files even though
ypclient is listed in the PACKAGES definition
in standard-client.

4



The database is queried via the machdb

program which is a Perl script that parses the
file, expands inheritances, and produces re-
sponses in various formats. One such prints
out all hosts in DNS record suitable for direct
use by BIND. There is also an option to check
all machine objects for the existence of cer-
tain required fields. A set of sample database
entries and query results are included as an
appendix.

5.2 Packagelink

Packagelink is a Perl program that takes hi-
erarchically organized package directories for
multiple architectures and builds a single tar-
get directory for users to access. It was origi-
nally designed to be run on a fileserver to build
a /usr/local filesystem containing hard links
to all appropriate files for that architecture.
In the last two years, it has been expanded
to build mirror filesystems by building the
target filesystem on a different machine than
the packages reside on and copying files in-
stead of linking them. Packagelink is designed
to be extremely flexible and can build not
only /usr/local, but any filesystem. This
method of operation is used to build / on a
machine from a set of packages on the instal-
lation server.

Packagelink is designed to operate on run-
ning systems. For that reason, it is careful to
not delete or change existing files until it is
sure that the current version is different from
the version to be installed. Therefore, it can
be run on a well-configured system and will
make no unnecessary changes that would hin-
der other processes.

While copying files, if Packagelink encoun-
ters any files ending in a particular suffix
(.plprocess by default), it will run those
files through an internal preprocessor. Any
strings of the form ##VARIABLE## will be re-
placed with the corresponding value speci-
fied by a -DVARIABLE=‘‘VALUE’’ command

line option. Conveniently, machdb can out-
put a list of -D arguments for all variables
defined for a machine. This preprocessing
serves as a substitute for having a script gener-
ate machine-specific configuration files or for
needing a separate package for every machine.

The ## syntax is also used since # is the
traditional comment character for UNIX con-
figuration files. Thus, a single comprehen-
sive inetd.conf (or other configuration file)
can be created for an entire group of ma-
chines. Services that will only run on some
machines can be put in lines beginning with
a ##SERVICENAME## directive. This will re-
main in the file unless -DSERVICENAME=‘‘’’
is specified as an argument to Packagelink. If
so, the comment will be removed and the ser-
vice activated.

Most services, however, can be optionally
installed using a System V style directory of
start scripts where each service has its own
script. Script names are alphanumerically or-
dered so that they are started in the correct
order. Each script is stored in the package
that it starts. Therefore, if a package is not
installed, the script will not be placed on the
machine and will not be run. BSD-style sys-
tems can have this functionality added by
appending a simple for loop to the end of
rc.local. This eliminates the need to main-
tain different rc.local scripts for each ma-
chine.

Packagelink has used various algorithms
for determining how to combine packages into
the proper filesystem. Currently it scans all
packages and builds a database in memory of
every file in every package. This database
is used to resolve conflicts between different
packages. Different packages can be given dif-
ferent priorities so that if a file exists in more
than one package, the version in the package
of highest priority will be installed. If dupli-
cate directories exist, Packagelink can be con-
figured to always merge them or to only merge
packages of the same priority.

5



The database built by scanning packages
is dumped into a file for subsequent executions
of Packagelink. Using this saved database, fu-
ture duplicates can be resolved without scan-
ning all previously installed packages.

A Packageunlink program is also planned.
This program will remove all files for a speci-
fied package and replace them with any dupli-
cate files that had previously been overridden
because they were in packages of lower prior-
ity.

A Packagecheck program will also be writ-
ten to verify that all files on a machine came
from a package and are correct. This will pro-
vide some of the functionality of Tripwire [6].

5.3 Installation Program

The main program, affectionately called
gutinteg, is also written in Perl. In its sim-
pler mode of operation, the default, the pro-
gram configures an already running machine
by performing a partial install. This is usually
done by running the script by hand or from a
periodic cron job. The program probes a ma-
chine for its MAC addresses using ifconfig

and dmesg. The Machdb entry for that MAC
address is then loaded. Packagelink is then
called to install software on the machine. Us-
ing / as the target filesystem, Packagelink
copies all files onto the machine. Gutinteg

then reinstalls the boot block or boot loader
on the root partition.

For complete installs, the machine is
booted from an alternate device. Exter-
nal SCSI drives, boot floppies, and network
filesystems have all been used. The install
scripts is added to the end of the normal boot
sequence. In addition to the normal steps of
a partial install, in this mode, gutinteg makes
use of the PARTITION variable in the machine
database to partition and all disks. A sample
value for a Solaris machine is:

c0t3d0: (a 500 ufs /) (b 500 swap

/tmp) c0t1d0: (h 1000 ufs /home

data)

This value specifies a 400 cylinder parti-
tion for /, and a 500 cylinder partition for
swap (to be mounted as /tmp on machines
that support Sun’s tmpfs[10]). A 1000 cylin-
der partition for /home is created on a second
disk. The data flag means that this partition
will not be formatted during installation.

The partition letters are abstract. On
operating systems with numbered partitions,
they will automatically be converted to 0–6 or
1–7 where appropriate. On operating systems
that traditionally have a 3rd partition con-
taining the entire disk, one will be automat-
ically created. On Linux machines, extended
partitions and other DOS-isms are also han-
dled automatically.

After partitioning and formatting disks,
Gutinteg installs the appropriate operating
system package(s), and proceeds with the
steps of a partial installation. Finally, op-
erating system dependent functions such as
configuring /dev and /devices are performed
and an fstab or equivalent file is produced
from the PARTITION list.

6 DOS

Our group is also responsible for maintaining
a Novell network of DOS machines. We de-
cided to require that Linux be installed on all
of these PCs so that we can use UNIX tools
to maintain the local DOS partitions. The
machines automatically reboot every night to
Linux, where the DOS partition is mounted as
/dosc. Currently, a cron job runs just after
that to fix any changes that users may have
made to the local disk during the day. This
functionality is being replaced by the new sys-
tem which will maintain /dosc as it maintains
every other directory.

6



7 Usage Experience

A previous version of the system was used to
upgrade 26 Sparc workstations to SunOS 4.1.4
in the fall of 1995. We also used this opportu-
nity to have the system repartition all of the
disks at the same time. A single, external,
boot disk was used to boot each machine for
installation. The process was so trivial, that
our User Consultants (who are not trained in
UNIX system administration) upgraded all of
the workstations without assistance from any
of the system administrators. While the pro-
cess could have been accelerated by remotely
booting several of the machines off the net-
work at once, this method allowed us to keep
all but one of the workstations up at all times
for use.

The current version has been used for all
new Linux workstations purchased or evalu-
ated in the last few months and all Linux and
Sun machines on our test network. A com-
plete reinstall of over 100 Linux machines was
performed this summer by one programmer
during a weekend.

Complete installations can take anywhere
from 30min to over an hour depending on the
size of the system, network traffic, etc. The
main bottleneck for reinstalling a large num-
ber of systems is the ability to do so simul-
taneously. Ramdisks on Linux machines and
network root partitions that can be used by
multiple machines simultaneously have been
key to allowing us this capability.

In addition, we are currently working to
populate the installation server with packages
for all of the key services on our main servers.
Once this has been completed, the system will
be used to reinstall all of our servers.

Once all of our machines have been rein-
stalled using the system, we will abandon all
other methods of maintaining local machines,
and switch to running the partial installation
script automatically on a regular basis.

8 Conclusions

The system described in this paper has al-
lowed our system administration staff to stop
maintaining individual machines and instead
maintain a single large template of packages
and configuration files. Since the files are still
stored in traditional directory hierarchies, the
learning-curve for maintaining the new system
is minimal. As a result, maintaining a large
network of machines is becoming less related
to the number of machines, and instead pro-
portional only to the number of different ar-
chitectures, operating systems, and software
packages.

9 Availability

The three tools comprising this system, gutin-
teg, machdb, and packagelink are all freely
available Perl programs. They are, how-
ever, not yet designed for public consumption.
Anxious readers are welcome to contact the
author for information on how to retrieve cur-
rent versions. Note that they will largely be
unsupported software, but I am always will-
ing to work with other users and, if necessary,
modify the programs to make them useful to
a wider audience.

10 Acknowledgments

The author would like to thank K. Scott Rowe
for his continuing work with and experience
using this system, Tony Heaton for his assis-
tance in testing it, and James Robnett for al-
lowing the author to pursue good ideas when
he found them.

11 Author Information

Michael Fisk developed this system while em-
ployed by the New Mexico Institute of Min-
ing and Technology’s Computer Center. He

7



has since completed his B.S. in Computer Sci-
ence from that university and is currently a
staff member at Los Alamos National Labo-
ratory in the Network Engineering Group of
the Computing, Information, and Communi-
cations Division. His current work includes
introducing the topic of this paper to system
administrators at the Lab, prototyping pro-
tected open networks, and researching other
areas of internetworking infrastructure. He
can be reached by e-mail at mfisk@lanl.gov or
by postal mail to:
Michael Fisk
CIC-5/MS B255
Los Alamos National Laboratory
Los Alamos, NM 87545

References

[1] Paul Anderson. Towards a high-level ma-
chine configuration system. In LISA VIII

Proceedings, 1994.

[2] Thomas Eirich. Beam: A tool for flexible
software update. In LISA VIII Proceed-

ings, 1994.

[3] Mark Fletcher. doit: A network software
management tool. In LISA VI Proceed-

ings, 1992.

[4] Dr. Magnus Harlander. Central system
administration in a heterogeneous unix

environment: Genuadmin. In LISA VIII

Proceedings, 1994.

[5] Imazu Hideyo. Omniconf - making os up-
grades and disk crash recovery easier. In
LISA VIII Proceedings, 1994.

[6] Gene H. Kim and Eugene H. Spafford.
Experiences with tripwire: Using in-
tegrity checkers for intrusion detection.
In SANS III Proceedings, 1994.

[7] John P. Rouillard and Richard B. Mar-
tin. Config: A mechanism for installing
and tracking system configurations. In
LISA VIII Proceedings, 1994.

[8] John P. Rouillard and Richard B. Mar-
tin. Depot-lite: A mechanism for manag-
ing software. In LISA VIII Proceedings,
1994.

[9] Michael E. Shaddock, Michael C.
Mitchell, and Helen E. Harrison. How to
upgrade 1500 workstations on saturday,
and still have time to mow the yard on
sunday. In LISA IX Proceedings, 1995.

[10] Peter Snyder. tmpfs: A Virtual

Memory File System. Sun Microsys-
tems, Inc., http://www.sun.ca/white-
papers/tmpfs.html.

8



Appendix: Sample Database Definitions

underdog: dot3 Standard486 speare20

IP=129.138.3.162

MAC=00:40:33:2d:08:3f

dot3: classC tcct.nmt.edu

GATEWAY=129.138.3.1

BROADCAST=129.138.3.255

NETWORK=129.138.3.0

classC:

NETMASK=255.255.255.0

tcct.nmt.edu:

NAMESERVER=129.138.3.220

NAMESERVER2=129.138.4.216

DOMAIN=tcct.nmt.edu

YPSERVER=teal

speare20:

LOCATION=speare20

PRINTER=speare16

Standard486: i486 mach32 at1500

at1500:

NIC=ne1500t

PACKAGES+=at1500

i486: full-linux

CPU=i486

ARCH=i486

mach32:

VIDEOCARD=mach32

PACKAGES+=mach32

full-linux: small-linux

OSREV=Slakware3.0

PACKAGES+=xfig transfig

small-linux: base-linux

OSREV=small-Slakware3.0

PACKAGES+=nntpclient

base-linux: dos

OS=linux

OSREV=Slakware3.0

ROOTFS=hda2

dos:

PACKAGES+=dos

Sample Database Query Result

q-bert.IP="129.138.3.162"

q-bert.MAC="00:40:33:2d:08:3f"

q-bert.PARTITION="hda: (a 51 msdos) (b 421 ext2) (c 53 swap)"

q-bert.PACKAGES="xfig transfig nntpclient at1500 mach32"

q-bert.LOCATION="speare20"

q-bert.PRINTER="speare16"

q-bert.OSREV="Slakware3.0"

q-bert.NIC="ne1500t"

q-bert.VIDEOCARD="mach32"

q-bert.CPU="i486"

q-bert.ARCH="i486"

q-bert.GATEWAY="129.138.3.1"

q-bert.BROADCAST="129.138.3.255"

q-bert.NETWORK="129.138.3.0"

q-bert.NAMESERVER="129.138.3.220"

q-bert.NAMESERVER2="129.138.4.216"

q-bert.DOMAIN="tcct.nmt.edu"

q-bert.YPSERVER="teal"

q-bert.NETMASK="255.255.255.0"

q-bert.OS="linux"

q-bert.ROOTFS="hda2"

9


